Role of Thermodynamics and Kinetics in the Composition of Ternary III-V Nanowires
We explain the composition of ternary nanowires nucleating from a quaternary liquid melt. The model we derive describes the evolution of the solid composition from the nucleated-limited composition to the kinetic one. The effect of the growth temperature, group V concentration and Au/III concentrati...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-12, Vol.10 (12), p.2553 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explain the composition of ternary nanowires nucleating from a quaternary liquid melt. The model we derive describes the evolution of the solid composition from the nucleated-limited composition to the kinetic one. The effect of the growth temperature, group V concentration and Au/III concentration ratio on the solid-liquid dependence is studied. It has been shown that the solid composition increases with increasing temperature and Au concentration in the droplet at the fixed In/Ga concentration ratio. The model does not depend on the site of nucleation and the geometry of monolayer growth and is applicable for nucleation and growth on a facet with finite radius. The case of a steady-state (or final) solid composition is considered and discussed separately. While the nucleation-limited liquid-solid composition dependence contains the miscibility gap at relevant temperatures for growth of In
Ga
As NWs, the miscibility gap may be suppressed completely in the steady-state growth regime at high supersaturation. The theoretical results are compared with available experimental data via the combination of the here described solid-liquid and a simple kinetic liquid-vapor model. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano10122553 |