Immobilization of Enological Pectinase on Magnetic Sensitive Polyamide Microparticles for Wine Clarification

The use of free pectinases as clarification biocatalysts constitutes a well-established practice in the large-scale production of various types of wines. However, when in the form of free enzymes, the recovery and reusability of pectinases is difficult if not impossible. To address these limitations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2024-01, Vol.13 (3), p.420
Hauptverfasser: Oliveira, Sandra Cristina, Dencheva, Nadya Vasileva, Denchev, Zlatan Zlatev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of free pectinases as clarification biocatalysts constitutes a well-established practice in the large-scale production of various types of wines. However, when in the form of free enzymes, the recovery and reusability of pectinases is difficult if not impossible. To address these limitations, the present study focuses on the noncovalent adsorption immobilization of a commercial pectinolytic preparation onto highly porous polyamide 6 (PA6) microparticles, both with and without magnetic properties, prepared via activated anionic polymerization. The two pectinase complexes resulting after immobilization underwent comparative activity and kinetic studies, contrasting them with the free enzyme preparation. In comparison with the free enzyme, the PA6-immobilized pectinase complexes exhibited more than double the specific activity toward the pectin substrate. They displayed a slightly higher affinity to the substrate while acting as faster catalysts that were more resistant to inhibition. Furthermore, the immobilized complexes were applied in the clarification process of industrial rosé must, whereby they demonstrated accelerated performance as compared with the free enzyme. Moreover, the PA6-immobilized pectinase biocatalysts offered the potential for three consecutive cycles of reuse, achieving complete rosé must clarification within relevant timeframes in the range of 3-36 h. All these results suggest the potential industrial application of the pectinases noncovalently immobilized upon PA6 microparticles.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13030420