Exact formulation for hysteresis loops and energy loss in Stoner–Wohlfarth systems

We propose an exact expression to describe the hysteresis loops of an ensemble of Stoner–Wohlfarth particles undergoing an alternating quasi-static magnetic field. A statistical approach, which treats the quantities characterizing each particle as random variables, is adopted to get the orientation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-05, Vol.13 (5), p.055018-055018-12
1. Verfasser: Appino, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an exact expression to describe the hysteresis loops of an ensemble of Stoner–Wohlfarth particles undergoing an alternating quasi-static magnetic field. A statistical approach, which treats the quantities characterizing each particle as random variables, is adopted to get the orientation distribution of the local polarizations with respect to the applied field direction and the constitutive equation of the whole particle assembly. The hysteresis loop area gives the energy loss figure, but we have also obtained a straightforward integral expression for this quantity. The analytical relationships for the symmetric loops and the losses are successfully tested against numerical results, and the mathematical method adopted also displayed the ability to reproduce the “elemental loop” associated with any given particle of the system. While having a fundamental character, the proposed approach bears applicative interest, representing a versatile tool as the core of codes that simulate the behavior of devices employing magnetic components.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0143905