Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope

A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-05, Vol.8 (1), p.15411-15411, Article 15411
Hauptverfasser: Rouvinski, Alexander, Dejnirattisai, Wanwisa, Guardado-Calvo, Pablo, Vaney, Marie-Christine, Sharma, Arvind, Duquerroy, Stéphane, Supasa, Piyada, Wongwiwat, Wiyada, Haouz, Ahmed, Barba-Spaeth, Giovanna, Mongkolsapaya, Juthathip, Rey, Félix A., Screaton, Gavin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic ‘breathing’ of E dimers at the virion surface. In contrast, antibodies targeting the E dimer epitope (EDE), readily exposed at the E dimer interface over the region of the conserved fusion loop, are very potent and broadly neutralizing. We here engineer E dimers locked by inter-subunit disulfide bonds, and show by X-ray crystallography and by binding to a panel of human antibodies that these engineered dimers do not expose the FLE, while retaining the EDE exposure. These locked dimers are strong immunogen candidates for a next-generation vaccine. The immunodominant epitope of dengue virus envelope protein (E) induces poorly neutralizing antibodies, which poses a problem for vaccine development. Here, the authors engineer covalently locked E dimers exposing an epitope that has been shown to induce potent and broadly neutralizing antibodies.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15411