Phytochemical Screening and Antibacterial Activity of Taxus baccata L. against Pectobacterium spp. and Dickeya chrysanthemi

The yew tree (Taxus baccata L.) is considered in folklore a symbol of immortality due to its qualities of longevity and regeneration. Despite its poisonous reputation, the yew tree has a long history of medicinal use, particularly in the form of extracts from its leaves and bark. In the work present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Horticulturae 2023-02, Vol.9 (2), p.201
Hauptverfasser: Sánchez-Hernández, Eva, González-García, Vicente, Martín-Gil, Jesús, Lorenzo-Vidal, Belén, Palacio-Bielsa, Ana, Martín-Ramos, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The yew tree (Taxus baccata L.) is considered in folklore a symbol of immortality due to its qualities of longevity and regeneration. Despite its poisonous reputation, the yew tree has a long history of medicinal use, particularly in the form of extracts from its leaves and bark. In the work presented herein, gas chromatography–mass spectrometry (GC–MS) chemical profiling was applied to the aqueous ammonia/hydromethanolic extracts of several plant organs of T. baccata, leading to the identification of different bioactive compounds than those previously characterized by high-performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS) in other extraction media. The leaf aqueous ammonia extract was rich in 2-hexylthiophene and 3-O-methyl-d-fructose; 9-octadecenoic and hexadecanoic acid were the main constituents of the bark aqueous ammonia extract; and the fruit hydromethanolic extract contained methyl 2-O-methyl-α-d-xylofuranoside, 1,3-dioxolane derivatives, and erysimoside. The antimicrobial activity of the extracts was assayed against four bacterial pathogens responsible for the soft rot and blackleg diseases of potatoes, viz. Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Pectobacterium parmentieri, and Dickeya chrysanthemi, resulting in minimum inhibitory concentration (MIC) values as low as 187 μg·mL−1. Bioassays on potato slices confirmed the efficacy of the leaf extract at this dose when applied as a preventive treatment before artificial inoculation with P. carotovorum subsp. carotovorum. In view of this high activity, these extracts may find application in the integrated pest management of soft rot Pectobacteriaceae (SRP) diseases.
ISSN:2311-7524
2311-7524
DOI:10.3390/horticulturae9020201