Nonlinear Aeroelastic System Identification Based on Neural Network
This paper focuses on the nonlinear aeroelastic system identification method based on an artificial neural network (ANN) that uses time-delay and feedback elements. A typical two-dimensional wing section with control surface is modelled to illustrate the proposed identification algorithm. The respon...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2018-10, Vol.8 (10), p.1916 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the nonlinear aeroelastic system identification method based on an artificial neural network (ANN) that uses time-delay and feedback elements. A typical two-dimensional wing section with control surface is modelled to illustrate the proposed identification algorithm. The response of the system, which applies a sine-chirp input signal on the control surface, is computed by time-marching-integration. A time-delay recurrent neural network (TDRNN) is employed and trained to predict the pitch angle of the system. The chirp and sine excitation signals are used to verify the identified system. Estimation results of the trained neural network are compared with numerical simulation values. Two types of structural nonlinearity are studied, cubic-spring and friction. The results indicate that the TDRNN can approach the nonlinear aeroelastic system exactly. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app8101916 |