CT-Based Quantitative Analysis for Pathological Features Associated With Postoperative Recurrence and Potential Application Upon Artificial Intelligence: A Narrative Review With a Focus on Chronic Subdural Hematomas

Chronic subdural hematomas (CSDHs) frequently affect the elderly population. The postoperative recurrence rate of CSDHs is high, ranging from 3% to 20%. Both qualitative and quantitative analyses have been explored to investigate the mechanisms underlying postoperative recurrence. We surveyed the pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular Imaging 2020, Vol.19, p.1536012120914773
Hauptverfasser: Kung, Woon-Man, Lin, Muh-Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic subdural hematomas (CSDHs) frequently affect the elderly population. The postoperative recurrence rate of CSDHs is high, ranging from 3% to 20%. Both qualitative and quantitative analyses have been explored to investigate the mechanisms underlying postoperative recurrence. We surveyed the pathophysiology of CSDHs and analyzed the relative factors influencing postoperative recurrence. Here, we summarize various qualitative methods documented in the literature and present our unique computer-assisted quantitative method, published previously, to assess postoperative recurrence. Imaging features of CSDHs, based on qualitative analysis related to postoperative high recurrence rate, such as abundant vascularity, neomembrane formation, and patent subdural space, could be clearly observed using the proposed quantitative analysis methods in terms of mean hematoma density, brain re-expansion rate, hematoma volume, average distance of subdural space, and brain shifting. Finally, artificial intelligence (AI) device types and applications in current health care are briefly outlined. We conclude that the potential applications of AI techniques can be integrated to the proposed quantitative analysis method to accomplish speedy execution and accurate prediction for postoperative outcomes in the management of CSDHs.
ISSN:1535-3508
1536-0121
1536-0121
DOI:10.1177/1536012120914773