CT-Based Quantitative Analysis for Pathological Features Associated With Postoperative Recurrence and Potential Application Upon Artificial Intelligence: A Narrative Review With a Focus on Chronic Subdural Hematomas
Chronic subdural hematomas (CSDHs) frequently affect the elderly population. The postoperative recurrence rate of CSDHs is high, ranging from 3% to 20%. Both qualitative and quantitative analyses have been explored to investigate the mechanisms underlying postoperative recurrence. We surveyed the pa...
Gespeichert in:
Veröffentlicht in: | Molecular Imaging 2020, Vol.19, p.1536012120914773 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic subdural hematomas (CSDHs) frequently affect the elderly population. The postoperative recurrence rate of CSDHs is high, ranging from 3% to 20%. Both qualitative and quantitative analyses have been explored to investigate the mechanisms underlying postoperative recurrence. We surveyed the pathophysiology of CSDHs and analyzed the relative factors influencing postoperative recurrence. Here, we summarize various qualitative methods documented in the literature and present our unique computer-assisted quantitative method, published previously, to assess postoperative recurrence. Imaging features of CSDHs, based on qualitative analysis related to postoperative high recurrence rate, such as abundant vascularity, neomembrane formation, and patent subdural space, could be clearly observed using the proposed quantitative analysis methods in terms of mean hematoma density, brain re-expansion rate, hematoma volume, average distance of subdural space, and brain shifting. Finally, artificial intelligence (AI) device types and applications in current health care are briefly outlined. We conclude that the potential applications of AI techniques can be integrated to the proposed quantitative analysis method to accomplish speedy execution and accurate prediction for postoperative outcomes in the management of CSDHs. |
---|---|
ISSN: | 1535-3508 1536-0121 1536-0121 |
DOI: | 10.1177/1536012120914773 |