Edge-group choosability of outerplanar and near-outerplanar graphs
Let $\chi_{gl}(G)$ be the {\it{group choice number}} of $G$. A graph $G$ is called {\it{edge-$k$-group choosable}} if its line graph is $k$-group choosable. The {\it{group-choice index}} of $G$, $\chi'_{gl}(G)$, is the smallest $k$ such that $G$ is edge-$k$-group choosable, that is, $\chi'...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2020-12, Vol.9 (4), p.211-216 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\chi_{gl}(G)$ be the {\it{group choice number}} of $G$. A graph $G$ is called {\it{edge-$k$-group choosable}} if its line graph is $k$-group choosable. The {\it{group-choice index}} of $G$, $\chi'_{gl}(G)$, is the smallest $k$ such that $G$ is edge-$k$-group choosable, that is, $\chi'_{gl}(G)$ is the group chice number of the line graph of $G$, $\chi_{gl}(\ell(G))$. It is proved that, if $G$ is an outerplanar graph with maximum degree $D |
---|---|
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2020.116355.1633 |