Edge-group choosability of outerplanar and near-outerplanar graphs

Let $\chi_{gl}(G)$ be the {\it{group choice number}} of $G$. A graph $G$ is called {\it{edge-$k$-group choosable}} if its line graph is $k$-group choosable. The {\it{group-choice index}} of $G$, $\chi'_{gl}(G)$, is the smallest $k$ such that $G$ is edge-$k$-group choosable, that is, $\chi'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on combinatorics 2020-12, Vol.9 (4), p.211-216
1. Verfasser: Amir Khamseh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\chi_{gl}(G)$ be the {\it{group choice number}} of $G$. A graph $G$ is called {\it{edge-$k$-group choosable}} if its line graph is $k$-group choosable. The {\it{group-choice index}} of $G$, $\chi'_{gl}(G)$, is the smallest $k$ such that $G$ is edge-$k$-group choosable, that is, $\chi'_{gl}(G)$ is the group chice number of the line graph of $G$, $\chi_{gl}(\ell(G))$. It is proved that, if $G$ is an outerplanar graph with maximum degree $D
ISSN:2251-8657
2251-8665
DOI:10.22108/toc.2020.116355.1633