Use of a 2-layer thermoelectric generator structure for photovoltaics cells cooling and energy recovery

A 2-layer thermoelectric generator was tested as a solution to increase the output of a PV cell. A number of practical experiments were carried out on both single and two combined thermoelectric generator (TEG) configurations connected in series with photovoltaic (PV) cells and connected to a load i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wnuk, Sławomir, Loumakis, George, Ramirez-Iniguez, Roberto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 2-layer thermoelectric generator was tested as a solution to increase the output of a PV cell. A number of practical experiments were carried out on both single and two combined thermoelectric generator (TEG) configurations connected in series with photovoltaic (PV) cells and connected to a load independently from each other. Testing was performed using a class AAA solar simulator system Sol3A and under real outdoor weather conditions. The results show a reduction of the maximum cell temperature by 10.3 ° on average and at the same time an increase in the tested photovoltaics-thermo-generators (PV-TEGs) voltage output of the proposed hybrid systems by 28.56-30.54% compared to the plain PV cell. It was experimentally confirmed that the TEGs-PV structure performs better than the bare PV cell during decline of insolation utilising, in addition to the limited at this time solar energy, the heat accumulated by the multilayer structure components. Experiments showed that for the selected period of time (1600s) the energy output increased by 27.6% compared to a plain PV cell. For a constant level of artifical light (1000W/m 2 ) the PV-TEG’s hybrid system showed an increase of energy yield of 3.1% compared to a plain PV system.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202123900003