Localization Method and Finite Element Modelling of the Mid-Point Anchor of High-Speed Railway Distributed in Long Straight Line with Large Slope
In order to ensure the safe and reliable operation of a high-speed railway, the precise positioning of the mid-point anchor in the catenary is very important. In view of the two problems in the calculation of the mid-point anchor position of the catenary in a long ramp section, the calculation accur...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-08, Vol.15 (16), p.5957 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to ensure the safe and reliable operation of a high-speed railway, the precise positioning of the mid-point anchor in the catenary is very important. In view of the two problems in the calculation of the mid-point anchor position of the catenary in a long ramp section, the calculation accuracy is low, and the calculation of the central anchor clamp position is lacking. In this study, the predetermined location of the mid-point anchor is chosen based on the mid-point anchor location principle and the line condition, and the range of the allowable error of the mid-point anchor setting is determined according to the predetermined position of the mid-point anchor. Secondly, by considering the impact of the line ramp and using the measured span length, the tension difference of the clue in the direction of the line is calculated. Then, the theoretical location of the mid-point anchor clamp is determined using the downhill component and the tension difference. Finally, the theoretical position of the clamp is corrected according to the setting of the dropper to obtain the corrected position of the clamp. An FEM (finite element method) of the catenary is established in ANSYS software to calculate the height difference between the messenger cable and the contact wire at the point of the mid-point anchor setting, and then the length of the mid-point anchor rope is obtained. Through the calculation of actual case data, the maximum value of the relative error of the location of the mid-point anchor obtained by this proposed method is very small compared with the actual position, which verifies the effectiveness of this method. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15165957 |