Identification of preclinical dementia according to ATN classification for stratified trial recruitment: A machine learning approach
The Amyloid/Tau/Neurodegeneration (ATN) framework was proposed to identify the preclinical biological state of Alzheimer's disease (AD). We investigated whether ATN phenotype can be predicted using routinely collected research cohort data. 927 EPAD LCS cohort participants free of dementia or Mi...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-10, Vol.18 (10), p.e0288039-e0288039 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Amyloid/Tau/Neurodegeneration (ATN) framework was proposed to identify the preclinical biological state of Alzheimer's disease (AD). We investigated whether ATN phenotype can be predicted using routinely collected research cohort data.
927 EPAD LCS cohort participants free of dementia or Mild Cognitive Impairment were separated into 5 ATN categories. We used machine learning (ML) methods to identify a set of significant features separating each neurodegeneration-related group from controls (A-T-(N)-). Random Forest and linear-kernel SVM with stratified 5-fold cross validations were used to optimize model whose performance was then tested in the ADNI database.
Our optimal results outperformed ATN cross-validated logistic regression models by between 2.2% and 8.3%. The optimal feature sets were not consistent across the 4 models with the AD pathologic change vs controls set differing the most from the rest. Because of that we have identified a subset of 10 features that yield results very close or identical to the optimal.
Our study demonstrates the gains offered by ML in generating ATN risk prediction over logistic regression models among pre-dementia individuals. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0288039 |