ANN-based evaluation of wind power generation: A case study in Kutahya, Turkey
Wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Turkey. The wind energy potential in various parts of Turkey is becoming economical due to reductions...
Gespeichert in:
Veröffentlicht in: | Journal of energy in Southern Africa 2014-11, Vol.25 (4), p.11-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Turkey. The wind energy potential in various parts of Turkey is becoming economical due to reductions in wind turbine costs, and in fossil fuel atmospheric pollution. This paper is to present, in brief, wind potential in Turkey and to perform an investigation on the wind energy potential of the Kutahya region. A wind measurement station was established at Dumlupinar University Main Campus in order to figure out the wind energy potential in the province. This study analyses the electricity generation capacity of the Kutahya region, Turkey, which uses the wind power system. In the study, the wind data collected from wind measurement stations between July 2001 and June 2004 (36 months) were evaluated to determine the energy potential of the region. Using this energy potential value, the power generation capacity of Kutahya was investigated for 17 different wind turbines. In this analysis, an ANN-based model and Weibull and Rayleigh distribution models were used to determine the power generation. In the ANN model, different feed-forward back propagation learning algorithms, namely Pola-Ribiere Conjugate Gradient, Levenberg–Marquardt and Scaled Conjugate Gradient were applied. The best appropriate model was determined as Levenberg–Marquardt with 15 neurons in a single hidden layer. Using the best ANN topology, it was determined that all the turbines were profitable except turbine type 1. The system with the turbine type 3 was decisively the most profitable case as determined at the end of the study according to Net Present Value concept. |
---|---|
ISSN: | 1021-447X 2413-3051 2413-3051 |
DOI: | 10.17159/2413-3051/2014/v25i4a2233 |