On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region

The climatological surface solar radiation (SSR; also called global radiation), which is largely dependent on cloud conditions, is an important indicator of the solar energy production potential. In the Baltic area, previous studies have indicated lower cloud amounts over seas than over land, in par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (21), p.3509
Hauptverfasser: Lindfors, Anders V., Hertsberg, Axel, Riihelä, Aku, Carlund, Thomas, Trentmann, Jörg, Müller, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The climatological surface solar radiation (SSR; also called global radiation), which is largely dependent on cloud conditions, is an important indicator of the solar energy production potential. In the Baltic area, previous studies have indicated lower cloud amounts over seas than over land, in particular during the summer. However, the existing literature on the SSR climate or how it translates into solar energy potential has not paid much attention to how the SSR behaves quantitatively in relation to the coastline. In this paper, we have studied the climatological land–sea contrast of the SSR over the Baltic area. For this, we used two satellite climate data records, CLARA-A2 and SARAH-2, together with a coastline data base and ground-based pyranometer measurements of the SSR. We analyzed the behaviour of the climatological mean SSR over the period 2003–2013 as a function of the distance to the coastline. The results show that off-shore locations on average receive higher SSR than inland areas and that the land–sea contrast in the SSR is strongest during the summer. Furthermore, the land–sea contrast in the summer time SSR exhibits similar behavior in various parts of the Baltic. For CLARA-A2, which shows better agreement with the ground-based measurements than SARAH-2, the annual SSR is 8% higher 20 km off the coastline than 20 km inland. For summer, i.e., June–August, this difference is 10%. The observed land–sea contrast in the SSR is further shown to correspond closely to the behavior of clouds. Here, convective clouds play an important role as they tend to form over inland areas rather than over the seas during the summer part of the year.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12213509