Computational pathology in the identification of HER2-low breast cancer: Opportunities and challenges
For the past 2 decades, pathologists have been accustomed to reporting the HER2 status of breast cancer as either positive or negative, based on HER2 IHC. Today, however, there is a clinical imperative to employ a 3-tier approach to interpreting HER2 IHC that can also identify tumours categorised as...
Gespeichert in:
Veröffentlicht in: | Journal of pathology informatics 2024-12, Vol.15, p.100343-100343, Article 100343 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the past 2 decades, pathologists have been accustomed to reporting the HER2 status of breast cancer as either positive or negative, based on HER2 IHC. Today, however, there is a clinical imperative to employ a 3-tier approach to interpreting HER2 IHC that can also identify tumours categorised as HER2-low. Meeting this need for a finer degree of discrimination may be challenging, and in this article, we consider the potential for the integration of computational approaches to support pathologists in achieving accurate and reproducible HER2 IHC scoring as well as outlining some of the practicalities involved. |
---|---|
ISSN: | 2153-3539 2229-5089 2153-3539 |
DOI: | 10.1016/j.jpi.2023.100343 |