Approximate Calculation of Functional Integrals Generated by Nonrelativistic and Relativistic Hamiltonians

The discussion revolves around the most recent outcomes in the realm of approximating functional integrals through calculations. Review of works devoted to the application of functional integrals in quantum mechanics and quantum field theory, nuclear physics and in other areas is presented. Methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-09, Vol.15 (9), p.1785
Hauptverfasser: Ayryan, Edik, Hnatic, Michal, Honkonen, Juha, Malyutin, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discussion revolves around the most recent outcomes in the realm of approximating functional integrals through calculations. Review of works devoted to the application of functional integrals in quantum mechanics and quantum field theory, nuclear physics and in other areas is presented. Methods obtained by the authors for approximate calculation of functional integrals generated by nonrelativistic Hamiltonians are given. One of the methods is based on the expansion in eigenfunctions of the Hamiltonian. In an alternate approach, the functional integrals are tackled using the semiclassical approximation. Methods for approximate evaluation of functional integrals generated by relativistic Hamiltonians are presented. These are the methods using functional polynomial approximation (analogue of formulas of a given degree of accuracy) and methods based on the expansion in eigenfunctions of the Hamiltonian, generating a functional integral.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15091785