Review of In Situ Detection and Ex Situ Characterization of Porosity in Laser Powder Bed Fusion Metal Additive Manufacturing
Over the past decade, significant research has focused on detecting abnormalities in metal laser powder bed fusion (L-PBF) additive manufacturing. Effective online monitoring systems are crucial for enhancing process stability, repeatability, and the quality of final components. Therefore, the devel...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2024-06, Vol.14 (6), p.669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past decade, significant research has focused on detecting abnormalities in metal laser powder bed fusion (L-PBF) additive manufacturing. Effective online monitoring systems are crucial for enhancing process stability, repeatability, and the quality of final components. Therefore, the development of in situ detection mechanisms has become essential for metal L-PBF systems, making efficient closed-loop control strategies to adjust process parameters in real time vital. This paper presents an overview of current in situ monitoring systems used in metal L-PBF, complemented by ex situ characterizations. It discusses in situ techniques employed in L-PBF and evaluates the applicability of commercial systems. The review covers optical, thermal, acoustic, and X-ray in situ methods, along with destructive and non-destructive ex situ methods like optical, Archimedes, and X-ray characterization techniques. Each technique is analyzed based on the sensor used for defect detection and the type or size of defects. Optical in situ monitoring primarily identifies large defects from powder bed abnormalities, while thermal methods detect defects as small as 100 µm and keyholes. Thermal in situ detection techniques are notable for their applicability to commercial devices and efficacy in detecting subsurface defects. Computed tomography scanning excels in locating porosity in 3D space with high accuracy. This study also explores the advantages of multi-sensor in situ techniques, such as combining optical and thermal sensors, and concludes by addressing current research needs and potential applications of multi-sensor systems. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met14060669 |