Deep generative AI models analyzing circulating orphan non-coding RNAs enable detection of early-stage lung cancer

Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.10090-12, Article 10090
Hauptverfasser: Karimzadeh, Mehran, Momen-Roknabadi, Amir, Cavazos, Taylor B., Fang, Yuqi, Chen, Nae-Chyun, Multhaup, Michael, Yen, Jennifer, Ku, Jeremy, Wang, Jieyang, Zhao, Xuan, Murzynowski, Philip, Wang, Kathleen, Hanna, Rose, Huang, Alice, Corti, Diana, Nguyen, Dang, Lam, Ti, Kilinc, Seda, Arensdorf, Patrick, Chau, Kimberly H., Hartwig, Anna, Fish, Lisa, Li, Helen, Behsaz, Babak, Elemento, Olivier, Zou, James, Hormozdiari, Fereydoun, Alipanahi, Babak, Goodarzi, Hani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generative capability of variational auto-encoders enables learning a robust and generalizable signature of blood-based biomarkers. In this study, we analyze orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as sex-, age-, and BMI-matched controls. We demonstrate that our multi-task generative AI model, Orion, surpasses commonly used methods in both overall performance and generalizability to held-out datasets. Orion achieves an overall sensitivity of 94% (95% CI: 87%–98%) at 87% (95% CI: 81%–93%) specificity for cancer detection across all stages, outperforming the sensitivity of other methods on held-out validation datasets by more than  ~ 30%. A generative AI model, Orion, learns a robust and generalizable pattern of non-small cell lung cancer from cancer-specific circulating non-coding RNAs. Orion enhances the performance of liquid biopsy for early cancer detection and tumor subtyping.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-53851-9