H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells
Embryonic stem cells (ESCs) are a hallmark of ideal pluripotent stem cells. Epigenetic reprogramming of induced pluripotent stem cells (iPSCs) has not been fully accomplished. iPSC generation is similar to somatic cell nuclear transfer (SCNT) in oocytes, and this procedure can be used to generate ES...
Gespeichert in:
Veröffentlicht in: | Stem cell reports 2016-06, Vol.6 (6), p.825-833 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Embryonic stem cells (ESCs) are a hallmark of ideal pluripotent stem cells. Epigenetic reprogramming of induced pluripotent stem cells (iPSCs) has not been fully accomplished. iPSC generation is similar to somatic cell nuclear transfer (SCNT) in oocytes, and this procedure can be used to generate ESCs (SCNT-ESCs), which suggests the contribution of oocyte-specific constituents. Here, we show that the mammalian oocyte-specific linker histone H1foo has beneficial effects on iPSC generation. Induction of H1foo with Oct4, Sox2, and Klf4 significantly enhanced the efficiency of iPSC generation. H1foo promoted in vitro differentiation characteristics with low heterogeneity in iPSCs. H1foo enhanced the generation of germline-competent chimeric mice from iPSCs in a manner similar to that for ESCs. These findings indicate that H1foo contributes to the generation of higher-quality iPSCs.
[Display omitted]
•H1foo enhanced the efficiency of iPSC generation•H1foo promoted in vitro differentiation characteristics with low heterogeneity•H1foo enhanced the generation of germline-competent chimeric mice
In this article, Yuasa and colleagues show that the mammalian oocyte-specific linker histone H1foo has beneficial effects on iPSC generation. Induction of H1foo with Oct4, Sox2, and Klf4 enhanced the efficiency of iPSC generation and improved the quality of iPSCs with low heterogeneity in vitro and in vivo. These findings indicate that H1foo contributes to the generation of higher quality iPSCs. |
---|---|
ISSN: | 2213-6711 2213-6711 |
DOI: | 10.1016/j.stemcr.2016.04.015 |