Potato Zero-Tillage and Mulching Is Promising in Achieving Agronomic Gain in Asia
Rice-based systems have recently been recognized as the most critical plant source of C emissions worldwide. Globally, rice production is highest in Asia. Actions to introduce sustainable intensification practices into existing rice lands or diversifying with lower C-emitting crops such as potatoes...
Gespeichert in:
Veröffentlicht in: | Agronomy (Basel) 2022-07, Vol.12 (7), p.1494 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rice-based systems have recently been recognized as the most critical plant source of C emissions worldwide. Globally, rice production is highest in Asia. Actions to introduce sustainable intensification practices into existing rice lands or diversifying with lower C-emitting crops such as potatoes will be crucial to mitigate climate change. The objective of this study is to analyze the effect of potato cultivation under zero/minimum-tillage and/or organic mulching (with emphasis on rice-straw) (PZTM) on key performance indicators that are crucial to achieving agronomic gains in Asia. Forty-nine studies were selected and systematically reviewed to address the study objective. Studies reveal a consensus of increase in yield, profitability, nutrient-use efficiency, and water productivity, promoted by the significant soil moisture conservation in PZTM. There is inconsistent evidence that zero-tillage benefits weed control, but its effectiveness is enhanced by mulching. Even if soil organic matter is increased (+13–33%) and zero-tillage is the main factor driving the reduction in C footprint, no values of kg CO2 eqha−1 have been reported in PZTM to date. Only a small fraction (∼2%) of the rice-cultivated areas (RCA) is intensified with potato cultivation. That way, scaling-up PZTM among rice farmers has large potential (∼24% RCA) to increase the sustainable intensification of rice-based systems in Asia. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy12071494 |