Impact of Ti Doping on the Microstructure and Mechanical Properties of CoCrFeMoNi High-Entropy Alloy

The design principle of high-entropy alloys is to mix many chemical elements in equal or nearly equal proportions to create new alloys with unique and special properties such as high strength, ductility and corrosion resistance. Some properties of high-entropy alloys can be adjusted via introducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2023-04, Vol.13 (5), p.854
Hauptverfasser: Brito-Garcia, Santiago Jose, Mirza-Rosca, Julia Claudia, Jimenez-Marcos, Cristina, Voiculescu, Ionelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design principle of high-entropy alloys is to mix many chemical elements in equal or nearly equal proportions to create new alloys with unique and special properties such as high strength, ductility and corrosion resistance. Some properties of high-entropy alloys can be adjusted via introducing new doping elements, which are selected according to working conditions. The high-entropy alloy CoCrFeMoNi was examined to determine the impact of Ti doping on its micro-structure, microhardness and elastic modulus. Microstructure analysis revealed a core structure consisting of both face-centered cubic (FCC) and body-centered cubic (BCC) phases, along with the formation of a Laves phase. The addition of Ti made the alloy grains finer and reduced the Mo concentration difference between the interdendritic and dendritic regions. As a result of Ti doping, the microhardness of the alloy increased from 369 HV 0.2 to 451 HV 0.2. Ti doping produced a doubling of the breaking strength value, although no significant changes were observed in the elastic modulus of the CoCrFeMoNi alloy.
ISSN:2075-4701
2075-4701
DOI:10.3390/met13050854