Jet Impingement Cooling Enhanced with Nano-Encapsulated PCM

In the present study, the laminar flow and heat transfer of water jet impingement enhanced with nano-encapsulated phase change material (NEPCM) slurry on a hot plate is analytically investigated for the first time. A similarity solution approach is applied to momentum and energy equations in order t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-02, Vol.15 (3), p.1034
Hauptverfasser: Mohaghegh, Mohammad Reza, Tasnim, Syeda Humaira, Aliabadi, Amir A., Mahmud, Shohel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the laminar flow and heat transfer of water jet impingement enhanced with nano-encapsulated phase change material (NEPCM) slurry on a hot plate is analytically investigated for the first time. A similarity solution approach is applied to momentum and energy equations in order to determine the flow velocity and heat transfer fields. The effect of different physical parameters such as jet velocity, Reynolds number, jet inlet temperature, and the NEPCM concentration on the cooling performance of the impinging jet are investigated. The volume fraction of NEPCM particles plays an essential role in the flow and heat transfer fields. The results show that NEPCM slurry can significantly enhance the cooling performance of the system as it improves the latent heat storage capacity of the liquid jet. However, the maximum cooling performance of the system is achieved under an optimum NEPCM concentration (15%). A further increase in NEPCM volume fraction has an unfavorable effect due to increasing the viscosity and reducing the conductivity simultaneously. The effect of adding nano-metal particles on the heat transfer performance is also investigated and compared with NEPCM slurry. NEPCM slurry shows a better result in its maximum performance. Compared with the water jet, adding nano and NEPCM particles would overall enhance the system’s thermal performance by 16% and 7%, respectively.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15031034