Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations

In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2023, Vol.2023, p.1-11
Hauptverfasser: Abidin, Muhammad Zainul, Marwan, Muhammad, Ullah, Naeem, Mohamed Zidan, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are main tools to obtain the results. Moreover, the results discussed in our work show the Gevrey class regularity of solution to the Cauchy problem of micropolar fluid equations.
ISSN:2314-4629
2314-4785
DOI:10.1155/2023/4083997