Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations
In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are m...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2023, Vol.2023, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are main tools to obtain the results. Moreover, the results discussed in our work show the Gevrey class regularity of solution to the Cauchy problem of micropolar fluid equations. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2023/4083997 |