Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime
Over the past few decades, exciton-polaritons have attracted substantial research interest due to their half-light-half-matter bosonic nature. Coupling exciton-polaritons with magnetic orders grants access to rich many-body phenomena, but has been limited by the availability of material systems that...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-09, Vol.14 (1), p.5966-5966, Article 5966 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past few decades, exciton-polaritons have attracted substantial research interest due to their half-light-half-matter bosonic nature. Coupling exciton-polaritons with magnetic orders grants access to rich many-body phenomena, but has been limited by the availability of material systems that exhibit simultaneous exciton resonances and magnetic ordering. Here we report magnetically-dressed microcavity exciton-polaritons in the van der Waals antiferromagnetic (AFM) semiconductor CrSBr coupled to a Tamm plasmon microcavity. Using angle-resolved spectroscopy, we reveal an exceptionally high exciton-photon coupling strength, up to 169 meV, demonstrating ultrastrong coupling that persists up to room temperature. By performing temperature-dependent spectroscopy, we show the magnetic nature of the exciton-polaritons in CrSBr microcavity as the magnetic order changes from AFM to paramagnetic. By applying an out-of-plane magnetic field, we achieve effective tuning of the polariton energy while maintaining the ultrastrong exciton-photon coupling strength. We attribute this to the spin canting process that modulates the interlayer exciton interaction.
Exciton-polaritons are hybrid light matter quasi-particles, which can occur in systems exhibiting strong light-matter coupling. Here, Wang et al study exciton-polaritons in the van der Waals antiferromagnetic material, CrSBr, coupled to a Tamm plasmon microcavity and find the exciton-polaritons are sensitive to and can be tuned by the magnetic order of CrSBr. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-41688-7 |