Transitions between neocortical seizure and non-seizure-like states and their association with presynaptic glutamate release
The transition between seizure and non-seizure states in neocortical epileptic networks is governed by distinct underlying dynamical processes. Based on the gamma distribution of seizure and inter-seizure durations, over time, seizures are highly likely to self-terminate; whereas, inter-seizure dura...
Gespeichert in:
Veröffentlicht in: | Neurobiology of disease 2020-12, Vol.146, p.105124-105124, Article 105124 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transition between seizure and non-seizure states in neocortical epileptic networks is governed by distinct underlying dynamical processes. Based on the gamma distribution of seizure and inter-seizure durations, over time, seizures are highly likely to self-terminate; whereas, inter-seizure durations have a low chance of transitioning back into a seizure state. Yet, the chance of a state transition could be formed by multiple overlapping, unknown synaptic mechanisms. To identify the relationship between the underlying synaptic mechanisms and the chance of seizure-state transitions, we analyzed the skewed histograms of seizure durations in human intracranial EEG and seizure-like events (SLEs) in local field potential activity from mouse neocortical slices, using an objective method for seizure state classification. While seizures and SLE durations were demonstrated to have a unimodal distribution (gamma distribution shape parameter >1), suggesting a high likelihood of terminating, inter-SLE intervals were shown to have an asymptotic exponential distribution (gamma distribution shape parameter |
---|---|
ISSN: | 0969-9961 1095-953X |
DOI: | 10.1016/j.nbd.2020.105124 |