Construction of Hermitian Self-Orthogonal Codes and Application
We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO) codes, and construct quaternary [n, 5] HSO for 342≤n≤492. Furthermore, we present methods of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and obtain many HLCD codes with good...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-07, Vol.12 (13), p.2117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO) codes, and construct quaternary [n, 5] HSO for 342≤n≤492. Furthermore, we present methods of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and obtain many HLCD codes with good parameters. As an application, 31 classes of entanglement-assisted quantum error correction codes (EAQECCs) with maximal entanglement can be obtained from these HLCD codes. These new EAQECCs have better parameters than those in the literature. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12132117 |