Construction of Hermitian Self-Orthogonal Codes and Application

We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO) codes, and construct quaternary [n, 5] HSO for 342≤n≤492. Furthermore, we present methods of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and obtain many HLCD codes with good...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-07, Vol.12 (13), p.2117
Hauptverfasser: Ren, Yuezhen, Li, Ruihu, Song, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO) codes, and construct quaternary [n, 5] HSO for 342≤n≤492. Furthermore, we present methods of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and obtain many HLCD codes with good parameters. As an application, 31 classes of entanglement-assisted quantum error correction codes (EAQECCs) with maximal entanglement can be obtained from these HLCD codes. These new EAQECCs have better parameters than those in the literature.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12132117