Transdermal delivery of 4-aminopyridine accelerates motor functional recovery and improves nerve morphology following sciatic nerve crush injury in mice

Oral 4-aminopyridine (4-AP) is clinically used for symptomatic relief in multiple sclerosis and we recently demonstrated that systemic 4-AP had previously unknown clinically-relevant effects after traumatic peripheral nerve injury including the promotion of re-myelination, improvement of nerve condu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural regeneration research 2020-01, Vol.15 (1), p.136-144
Hauptverfasser: Clark, Andrew, Hsu, Chia, Hassan Talukder, M, Noble, Mark, Elfar, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oral 4-aminopyridine (4-AP) is clinically used for symptomatic relief in multiple sclerosis and we recently demonstrated that systemic 4-AP had previously unknown clinically-relevant effects after traumatic peripheral nerve injury including the promotion of re-myelination, improvement of nerve conductivity, and acceleration of functional recovery. We hypothesized that, instead of oral or injection administration, transdermal 4-AP (TD-4-AP) could also improve functional recovery after traumatic peripheral nerve injury. Mice with surgical traumatic peripheral nerve injury received TD-4AP or vehicle alone and were examined for skin permeability, pharmacokinetics, functional, electrophysiological, and nerve morphological properties. 4-AP showed linear pharmacokinetics and the maximum plasma 4-AP concentrations were proportional to TD-4-AP dose. While a single dose of TD-4-AP administration demonstrated rapid transient improvement in motor function, chronic TD-4-AP treatment significantly improved motor function and nerve conduction and these effects were associated with fewer degenerating axons and thicker myelin sheaths than those from vehicle controls. These findings provide direct evidence for the potential transdermal applicability of 4-AP and demonstrate that 4-AP delivered through the skin can enhance in-vivo functional recovery and nerve conduction while decreasing axonal degeneration. The animal experiments were approved by the University Committee on Animal Research (UCAR) at the University of Rochester (UCAR-2009-019) on March 31, 2017.
ISSN:1673-5374
1876-7958
DOI:10.4103/1673-5374.264471