Assessing GPT-4's Performance in Delivering Medical Advice: Comparative Analysis With Human Experts
Accurate medical advice is paramount in ensuring optimal patient care, and misinformation can lead to misguided decisions with potentially detrimental health outcomes. The emergence of large language models (LLMs) such as OpenAI's GPT-4 has spurred interest in their potential health care applic...
Gespeichert in:
Veröffentlicht in: | JMIR medical education 2024-07, Vol.10, p.e51282-e51282 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate medical advice is paramount in ensuring optimal patient care, and misinformation can lead to misguided decisions with potentially detrimental health outcomes. The emergence of large language models (LLMs) such as OpenAI's GPT-4 has spurred interest in their potential health care applications, particularly in automated medical consultation. Yet, rigorous investigations comparing their performance to human experts remain sparse.
This study aims to compare the medical accuracy of GPT-4 with human experts in providing medical advice using real-world user-generated queries, with a specific focus on cardiology. It also sought to analyze the performance of GPT-4 and human experts in specific question categories, including drug or medication information and preliminary diagnoses.
We collected 251 pairs of cardiology-specific questions from general users and answers from human experts via an internet portal. GPT-4 was tasked with generating responses to the same questions. Three independent cardiologists (SL, JHK, and JJC) evaluated the answers provided by both human experts and GPT-4. Using a computer interface, each evaluator compared the pairs and determined which answer was superior, and they quantitatively measured the clarity and complexity of the questions as well as the accuracy and appropriateness of the responses, applying a 3-tiered grading scale (low, medium, and high). Furthermore, a linguistic analysis was conducted to compare the length and vocabulary diversity of the responses using word count and type-token ratio.
GPT-4 and human experts displayed comparable efficacy in medical accuracy ("GPT-4 is better" at 132/251, 52.6% vs "Human expert is better" at 119/251, 47.4%). In accuracy level categorization, humans had more high-accuracy responses than GPT-4 (50/237, 21.1% vs 30/238, 12.6%) but also a greater proportion of low-accuracy responses (11/237, 4.6% vs 1/238, 0.4%; P=.001). GPT-4 responses were generally longer and used a less diverse vocabulary than those of human experts, potentially enhancing their comprehensibility for general users (sentence count: mean 10.9, SD 4.2 vs mean 5.9, SD 3.7; P |
---|---|
ISSN: | 2369-3762 2369-3762 |
DOI: | 10.2196/51282 |