Fabrication of surface-functionalized PUA composites to achieve superhydrophobicity

Herein, we present a facile fabrication method to prepare the optically transparent, flexible and self-cleanable poly(urethane acrylate) (PUA) superhydrophobic film. The low surface energy siloxane functionalization on the thermally activated µ-patterned PUA/graphene oxide composite (S-PG) was found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micro and Nano Systems Letters 2019-08, Vol.7 (1), p.1-6, Article 12
Hauptverfasser: Hou, Tian-Feng, Shanmugasundaram, Arunkumar, Nguyen, Bui Quoc Huy, Lee, Dong-Weon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we present a facile fabrication method to prepare the optically transparent, flexible and self-cleanable poly(urethane acrylate) (PUA) superhydrophobic film. The low surface energy siloxane functionalization on the thermally activated µ-patterned PUA/graphene oxide composite (S-PG) was found to be a successful strategy to modify the PUA intrinsic hydrophilicity into superhydrophobic nature. The S-PG film (with GO content of 0.1 wt%) repeatedly showed the water contact angle (WCA) of 149.82 ± 1° with excellent self-cleaning property. Further, the fabricated film exhibited high optical transparency (80%) in the 400–800 nm wavelength region. Finally, the practical applicability of the fabricated S-PG film was demonstrated by using the film as a protective layer for solar panel module. The power conversion efficiency (PCE) of the solar module with and without S-PG superhydrophobic film was found to be 5.98% and 5.82%, respectively. The enhancement in the PCE performance of the solar module is attributed to the excellent optical transparent and less light reflecting nature of the proposed film.
ISSN:2213-9621
2213-9621
DOI:10.1186/s40486-019-0090-9