Naturally-meaningful and efficient descriptors: machine learning of material properties based on robust one-shot ab initio descriptors

Establishing a data-driven pipeline for the discovery of novel materials requires the engineering of material features that can be feasibly calculated and can be applied to predict a material’s target properties. Here we propose a new class of descriptors for describing crystal structures, which we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cheminformatics 2022-11, Vol.14 (1), p.78-78, Article 78
Hauptverfasser: Tawfik, Sherif Abdulkader, Russo, Salvy P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Establishing a data-driven pipeline for the discovery of novel materials requires the engineering of material features that can be feasibly calculated and can be applied to predict a material’s target properties. Here we propose a new class of descriptors for describing crystal structures, which we term Robust One-Shot Ab initio (ROSA) descriptors. ROSA is computationally cheap and is shown to accurately predict a range of material properties. These simple and intuitive class of descriptors are generated from the energetics of a material at a low level of theory using an incomplete ab initio calculation. We demonstrate how the incorporation of ROSA descriptors in ML-based property prediction leads to accurate predictions over a wide range of crystals, amorphized crystals, metal–organic frameworks and molecules. We believe that the low computational cost and ease of use of these descriptors will significantly improve ML-based predictions.
ISSN:1758-2946
1758-2946
DOI:10.1186/s13321-022-00658-9