Arginine Deiminase and Biotin Metabolism Signaling Pathways Play an Important Role in Human-Derived Serotype V, ST1 Streptococcus agalactiae Virulent Strain upon Infected Tilapia

Our previous study showed that human-derived Streptococcus agalactiae (serotype V) could infect tilapia, but the mechanism underlying the cross-species infection remains unrecognized. In this study, a multi-omics analysis was performed on human-derived S.agalactiae strain NNA048 (virulent to tilapia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animals (Basel) 2020-05, Vol.10 (5), p.849
Hauptverfasser: Liu, Yu, Li, Liping, Luo, Zhiping, Wang, Rui, Huang, Ting, Liang, Wanwen, Gu, Qunhong, Yu, Fangzhao, Chen, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous study showed that human-derived Streptococcus agalactiae (serotype V) could infect tilapia, but the mechanism underlying the cross-species infection remains unrecognized. In this study, a multi-omics analysis was performed on human-derived S.agalactiae strain NNA048 (virulent to tilapia, serotype V, ST1) and human-derived S.agalactiae strain NNA038 (non-virulent to tilapia, serotype V, ST1). The results showed that 907 genes (504 up/403 down) and 89 proteins (51 up/38 down) were differentially expressed (p < 0.05) between NNA038 and NNA048. Among them, 56 genes (proteins) were altered with similar trends at both mRNA and protein levels. Functional annotation of them showed that the main differences were enriched in the arginine deiminase system signaling pathway and biotin metabolism signaling pathway: gdhA, glnA, ASL, ADI, OTC, arcC, FabF, FabG, FabZ, BioB and BirA genes may have been important factors leading to the pathogenicity differences between NNA038 and NNA048. We aimed to provide a comprehensive analysis of the human-derived serotype V ST1 S.agalactiae strains, which were virulent and non-virulent to tilapia, and provide a more comprehensive understanding of the virulence mechanism.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani10050849