Generalised radiating fields in Einstein–Gauss–Bonnet gravity

A five-dimensional spherically symmetric generalised radiating field is studied in Einstein–Gauss–Bonnet gravity. We assume the matter distribution is an extended Vaidya-like source and the resulting Einstein–Gauss–Bonnet field equations are solved for the matter variables and mass function. The evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2020-10, Vol.80 (10), p.1-11, Article 971
Hauptverfasser: Brassel, Byron P., Maharaj, Sunil D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A five-dimensional spherically symmetric generalised radiating field is studied in Einstein–Gauss–Bonnet gravity. We assume the matter distribution is an extended Vaidya-like source and the resulting Einstein–Gauss–Bonnet field equations are solved for the matter variables and mass function. The evolution of the mass, energy density and pressure are then studied within the spacetime manifold. The effects of the higher order curvature corrections of Einstein–Gauss–Bonnet gravity are prevalent in the analysis of the mass function when compared to general relativity. The effects of diffusive transport are then considered and we derive the specific equation for which diffusive behaviour is possible. Gravitational collapse is then considered and we show that collapse ends with a weak and conical singularity for the generalised source, which is not the case in Einstein gravity.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-020-08538-y