A self-adaptive Tseng extragradient method for solving monotone variational inequality and fixed point problems in Banach spaces

In this paper, we introduce a self-adaptive projection method for finding a common element in the solution set of variational inequalities (VIs) and fixed point set for relatively nonexpansive mappings in 2-uniformly convex and uniformly smooth real Banach spaces. We prove a strong convergence resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Demonstratio mathematica 2021-12, Vol.54 (1), p.527-547
1. Verfasser: Jolaoso, Lateef Olakunle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a self-adaptive projection method for finding a common element in the solution set of variational inequalities (VIs) and fixed point set for relatively nonexpansive mappings in 2-uniformly convex and uniformly smooth real Banach spaces. We prove a strong convergence result for the sequence generated by our algorithm without imposing a Lipschitz condition on the cost operator of the VIs. We also provide some numerical examples to illustrate the performance of the proposed algorithm by comparing with related methods in the literature. This result extends and improves some recent results in the literature in this direction.
ISSN:2391-4661
2391-4661
DOI:10.1515/dema-2021-0016