Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2

Excessive exposure to solar ultraviolet (UV) radiation has damaging effects on life on Earth. High-energy short-wavelength ultraviolet B (UVB) is biologically effective, influencing a range of dermal processes, including the potentially beneficial production of vitamin D. In addition to the damaging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-02, Vol.13 (4), p.752
Hauptverfasser: Parisi, Alfio, Igoe, Damien, Downs, Nathan, Turner, Joanna, Amar, Abdurazaq, A Jebar, Mustapha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive exposure to solar ultraviolet (UV) radiation has damaging effects on life on Earth. High-energy short-wavelength ultraviolet B (UVB) is biologically effective, influencing a range of dermal processes, including the potentially beneficial production of vitamin D. In addition to the damaging effects of UVB, the longer wavelength and more abundant ultraviolet A (UVA) has been shown to be linked to an increased risk of skin cancer. To evaluate this risk requires the monitoring of the solar UVA globally on a time repetitive basis in order to provide an understanding of the environmental solar UVA irradiance and resulting exposures that humans may receive during their normal daily activities. Satellite-based platforms, with the appropriate validation against ground-based instrumentation, can provide global monitoring of the solar UVA environment. Two satellite platforms that currently provide data on the terrestrial UVA environment are the ozone monitoring instrument (OMI) and the global ozone monitoring experiment (GOME-2). The objectives of this review are to provide a summary of the OMI and GOME-2 satellite-based platforms for monitoring the terrestrial UVA environment and to compare the remotely sensed UVA data from these platforms to that from ground-based instrumentation.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13040752