Translaminar neuromorphotopological clustering and classification of dentate nucleus neurons

Thisstudy aims to determine whether dentate neurons can be translaminarlyneuromorphotopologically classified as ventrolateral or dorsomedial type. Adulthuman dentate interneuron 2D binary images are analyzed. The analysis isperformed on both real and virtual neuron samples and 29 parameters are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative neuroscience 2018-01, Vol.17 (2), p.105-124
Hauptverfasser: Grbatinić, Ivan, Milosevic, Nebojsa, Maric, Dusica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thisstudy aims to determine whether dentate neurons can be translaminarlyneuromorphotopologically classified as ventrolateral or dorsomedial type. Adulthuman dentate interneuron 2D binary images are analyzed. The analysis isperformed on both real and virtual neuron samples and 29 parameters are used.They are divided into the classes: neuron surface, shape, length, branching andcomplexity. Clustering is performed by an algorithm that employs predictor extraction (matrix attractor analysis/non-negative matrix factorization and cluster analysis of predictor factors - separate unifactor analysis/Student’s t-test and MANOVA) and multivariate cluster analysis (cluster analysis, principal component analysis, factor analysis with pro/varimax rotation, Fisher’s linear discriminant analysis and feed-forward backpropagation artificial neural networks). The separate unifactor analysis extracted as significant the following predictors from the natural cell sample: the Npd (p< 0:05), and from the virtual cell sample: the Adt (p< 0.05),Do (p< 0.001), Ms (p< 0.01), Dwdth (p< 0:001), Npd (p< 0:05), Nsd (p< 0.001), Nt/hod (p< 0.001), Nmax (p< 0.01), Ds (p< 0.001), Cdf (Nt/hod)st (p< 0.05). For the multidimensional analysis, with the exception of the Fisher’s linear discriminant analysis which gave a false positive result, all other analyses rejected the translaminar dentate neuron classification. Thus, dentate neurons cannot be classified into ventrolateral/dorsomedial neuromorphotopological subtypes. Although some differences were found to exist, they are not sufficient to carry this classification. The methods of multidimensional statistical analysis are again shown to be the best for such kinds of analysis.
ISSN:0219-6352
1757-448X
1757-448X
DOI:10.31083/JIN-170044