Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation

Haze is a term that is widely used in image processing to refer to natural and human-activity-emitted aerosols. It causes light scattering and absorption, which reduce the visibility of captured images. This reduction hinders the proper operation of many photographic and computer-vision applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (11), p.3896
Hauptverfasser: Ngo, Dat, Lee, Gi-Dong, Kang, Bongsoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Haze is a term that is widely used in image processing to refer to natural and human-activity-emitted aerosols. It causes light scattering and absorption, which reduce the visibility of captured images. This reduction hinders the proper operation of many photographic and computer-vision applications, such as object recognition/localization. Accordingly, haze removal, which is also known as image dehazing or defogging, is an apposite solution. However, existing dehazing algorithms unconditionally remove haze, even when haze occurs occasionally. Therefore, an approach for haze density estimation is highly demanded. This paper then proposes a model that is known as the haziness degree evaluator to predict haze density from a single image without reference to a corresponding haze-free image, an existing georeferenced digital terrain model, or training on a significant amount of data. The proposed model quantifies haze density by optimizing an objective function comprising three haze-relevant features that result from correlation and computation analysis. This objective function is formulated to maximize the image’s saturation, brightness, and sharpness while minimizing the dark channel. Additionally, this study describes three applications of the proposed model in hazy/haze-free image classification, dehazing performance assessment, and single image dehazing. Extensive experiments on both real and synthetic datasets demonstrate its efficacy in these applications.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21113896