Characterising the seasonal nature of meteorological drought onset and termination across Australia

Drought, and its associated impacts, represents one of the costliest natural hazards worldwide, highlighting the need for prediction and preparedness. While advancements have been made in monitoring current droughts, prediction of onset and termination have proven to be much more challenging. This i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Southern Hemisphere earth systems science 2022-03, Vol.72 (1), p.38-51
Hauptverfasser: Gibson, A. J., Verdon-Kidd, D. C., Hancock, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought, and its associated impacts, represents one of the costliest natural hazards worldwide, highlighting the need for prediction and preparedness. While advancements have been made in monitoring current droughts, prediction of onset and termination have proven to be much more challenging. This is because drought is unlike any other natural hazard and cannot be characterised by a single weather event. There is also a high degree of spatial variability in this phenomenon across the vast expanse of the Australian continent. Therefore, by characterising regionally specific expressions of drought, we may improve drought predictability. In this study, we analyse the timing of onset and termination of meteorological droughts across Australia from 1900 to 2015, as well as their local and regional climate controls. We show that meteorological drought onset has a strong seasonal signature across Australia that varies spatially, whereas termination is less seasonally restricted. Using a Random Forest modelling approach with predictor variables representative of large-scale ocean-atmosphere phenomena and local climate, up to 75% of the variance in the Standardised Precipitation Index during both onset and termination could be explained. This study offers support to continued development in long-lead forecasting of local and large-scale ocean/atmosphere conditions to improve drought prediction in Australia and elsewhere.
ISSN:2206-5865
2206-5865
DOI:10.1071/ES21009