Synthesis and Evaluation of Mechanical Properties of Hydroxyapatite/ Sol-gel Derived Bioactive Glass Particles Composites

In the present study, a bioceramic-based composite with remarkable mechanical properties and in vitro apatite forming ability was synthesized by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol-gel derived bioactive glass (64SiO2-26CaO-5MgO-5ZnO) (based on mole %). HA was synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mavādd-i pīshraftah dar muhandisī 2012-06, Vol.31 (1), p.57-72
Hauptverfasser: M. Ashuri, F. Moztarzadeh, N. Nezafati, A. Ansari Hamedani, M. R. Tahriri
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, a bioceramic-based composite with remarkable mechanical properties and in vitro apatite forming ability was synthesized by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol-gel derived bioactive glass (64SiO2-26CaO-5MgO-5ZnO) (based on mole %). HA was synthesized through co-precipitation method. The stabilization temperature of the bioactive glass was set to be 700 ºC according to simultaneous thermal analysis (STA). Laser Particle Size Analysis (LPSA) was used to compare the particle size distributions of the synthetic powders. HA matrix was mixed with different weight percentages of bioactive glass (5, 10, 15, 20, 25 and 30 wt. %) and compressed by 80 MPa pressure. After sintering the uniaxial compression test of the samples was done and the specimen with the highest compressive strength (20 wt. % bioactive glass) was selected to be immersed in the Simulated Body Fluid (SBF) for 3, 7 and 14 days. The results showed that the compressive strength of the sample decreased after keeping it in the SBF. Also, inductively coupled plasma analysis (ICP) was used to study the ion release behavior of the sample in the SBF. Finally, phase composition, microstructure and functional groups in the composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infra-red spectroscopy (FTIR) techniques, respectively.
ISSN:2251-600X
2423-5733