Pruning Quantized Unsupervised Meta-Learning DegradingNet Solution for Industrial Equipment and Semiconductor Process Anomaly Detection and Prediction

Machine- and deep-learning methods are used for industrial applications in prognostics and health management (PHM) for semiconductor processing and equipment anomaly detection to achieve proactive equipment maintenance and prevent process interruptions or equipment downtime. This study proposes a Pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-03, Vol.14 (5), p.1708
Hauptverfasser: Yu, Yi-Cheng, Yang, Shiau-Ru, Chuang, Shang-Wen, Chien, Jen-Tzung, Lee, Chen-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine- and deep-learning methods are used for industrial applications in prognostics and health management (PHM) for semiconductor processing and equipment anomaly detection to achieve proactive equipment maintenance and prevent process interruptions or equipment downtime. This study proposes a Pruning Quantized Unsupervised Meta-learning DegradingNet Solution (PQUM-DNS) for the fast training and retraining of new equipment or processes with limited data for anomaly detection and the prediction of various equipment and process conditions. This study utilizes real data from a factory chiller host motor, the Paderborn current and vibration open dataset, and the SECOM semiconductor open dataset to conduct experimental simulations, calculate the average value, and obtain the results. Compared to conventional deep autoencoders, PQUM-DNS reduces the average data volume required for rapid training and retraining by about 75% with similar AUC. The average RMSE of the predictive degradation degree is 0.037 for Holt–Winters, and the model size is reduced by about 60% through pruning and quantization which can be realized by edge devices, such as Raspberry Pi. This makes the proposed PQUM-DNS very suitable for intelligent equipment management and maintenance in industrial applications.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14051708