Differential Evaluation of Ecological Resilience in 45 Cities along the Yangtze River in China: A New Multidimensional Analysis Framework

The rapid pace of urbanization and global climate change necessitates a thorough assessment of urban ecological resilience to cultivate sustainable regional ecosystem development. Cities along the Yangtze River face an intensifying conflict between ecological preservation and socio-economic growth....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Land (Basel) 2024-10, Vol.13 (10), p.1588
Hauptverfasser: Li, Chong, Wang, Yibao, Qing, Wen, Li, Cuixi, Yang, Yujiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid pace of urbanization and global climate change necessitates a thorough assessment of urban ecological resilience to cultivate sustainable regional ecosystem development. Cities along the Yangtze River face an intensifying conflict between ecological preservation and socio-economic growth. Analyzing the ecological resilience of these urban centers is essential for achieving equilibrium in regional urban ecosystems. This study proposes a “system process space” attribute analysis framework, taking into account urban development processes, ecosystem structure, and resilience evolution stages. Utilizing data from 45 Yangtze River cities, we establish a “Driver, Pressure, State, Impact, and Response” (DPSIR) evaluation index system to evaluate changes in ecological resilience levels and evolution trends from 2011 to 2022. Our findings indicate that: (1) The ecological resilience index of Yangtze River cities increased from 0.177 to 0.307 between 2011 and 2022, progressing through three phases: ecological resilience construction, rapid development, and stable development. (2) At the city level, ecological resilience along the Yangtze River exhibits uneven development characteristics. Upstream cities display a significant “stepped” pattern, midstream cities exhibit a significant “Matthew effect”, and downstream cities present a pyramid-shaped pattern. While regional differences in ecological resilience persist, overall polarization is gradually decreasing, intercity connections are strengthening, and there is a growing focus on coordinated regional development. (3) The spatial distribution of ecological resilience in Yangtze River cities demonstrates both continuity and evolution, generally forming a “core-edge” clustered pattern. Based on these findings, we recommend enhancing inter-city cooperation and connectivity, addressing imbalances in urban ecological resilience, and promoting high-quality ecological resilience development along the Yangtze River through tailored development strategies for each city.
ISSN:2073-445X
2073-445X
DOI:10.3390/land13101588