Stochastic stability and global dynamics of a mathematical model for drug use: Statistical sensitivity analysis via PRCC

This article examines the stochastic stability and global dynamics of a mathematical model of drug use. The model divides the population into five compartments current drug users, temporarily abstinent drug users, permanently abstinent drug users, and drug users in rehabilitation. Using Brownian mot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2024-12, Vol.12, p.100964, Article 100964
Hauptverfasser: Soulaimani, Sara, Kaddar, Abdelilah, Rihan, Fathalla A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article examines the stochastic stability and global dynamics of a mathematical model of drug use. The model divides the population into five compartments current drug users, temporarily abstinent drug users, permanently abstinent drug users, and drug users in rehabilitation. Using Brownian motion, deterministic equations are extended to incorporate stochastic perturbations, capturing real-life uncertainties in drug use within compartments. An analysis of Lyapunov functions is used to determine the global stability of the model. By introducing stochastic elements into the model, we can examine its stability under random perturbations. A global sensitivity analysis, including PRCC results, is conducted to confirm the robustness of the model. Stable drug-free and drug-present equilibria can be maintained in both deterministic and stochastic environments. Numerical simulations illustrate the impact of various parameters on population dynamics and rehabilitation program effectiveness.
ISSN:2666-8181
2666-8181
DOI:10.1016/j.padiff.2024.100964