A Study of Soil-Borne Fusarium Wilt in Continuous Cropping Chrysanthemum Cultivar 'Guangyu' in Henan, China
Cut chrysanthemum, known as a highly favored floral choice globally, experiences a significant decline in production due to continuous cropping. The adverse physiological effects on cut chrysanthemums result from the degradation of a soil's physical and chemical properties, coupled with the pro...
Gespeichert in:
Veröffentlicht in: | Journal of fungi (Basel) 2024-01, Vol.10 (1), p.14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cut chrysanthemum, known as a highly favored floral choice globally, experiences a significant decline in production due to continuous cropping. The adverse physiological effects on cut chrysanthemums result from the degradation of a soil's physical and chemical properties, coupled with the proliferation of pathogens. The "Guangyu" cultivar in Xinxiang, Henan Province, China, has been specifically influenced by these effects. First, the precise pathogen accountable for wilt disease was effectively identified and validated in this study. An analysis was then conducted to examine the invasion pattern of the pathogen and the physiological response of chrysanthemum. Finally, the PacBio platform was employed to investigate the dynamic alterations in the microbial community within the soil rhizosphere by comparing the effects of 7 years of monocropping with the first year. Findings indicated that
was the primary causative agent responsible for wilt disease, because it possesses the ability to invade and establish colonies in plant roots, leading to alterations in various physiological parameters of plants. Continuous cropping significantly disturbed the microbial community composition, potentially acting as an additional influential factor in the advancement of wilt. |
---|---|
ISSN: | 2309-608X 2309-608X |
DOI: | 10.3390/jof10010014 |