Investigation of the thermal tolerance of silicon-based lateral spin valves
Improvement in the thermal tolerance of Si-based spin devices is realized by employing thermally stable nonmagnetic (NM) electrodes. For Au/Ta/Al electrodes, intermixing between Al atoms and Au atoms occurs at approximately 300 °C, resulting in the formation of a Au/Si interface. The Au–Si liquid ph...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-05, Vol.11 (1), p.10583-10583, Article 10583 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improvement in the thermal tolerance of Si-based spin devices is realized by employing thermally stable nonmagnetic (NM) electrodes. For Au/Ta/Al electrodes, intermixing between Al atoms and Au atoms occurs at approximately 300 °C, resulting in the formation of a Au/Si interface. The Au–Si liquid phase is formed and diffuses mainly along an in-plane direction between the Si and AlN capping layers, eventually breaking the MgO layer of the ferromagnetic (FM) metal/MgO electrodes, which is located 7 µm away from the NM electrodes. By changing the layer structure of the NM electrode from Au/Ta/Al to Au/Ta, the thermal tolerance is clearly enhanced. Clear spin transport signals are obtained even after annealing at 400 °C. To investigate the effects of Mg insertion in FM electrodes on thermal tolerance, we also compare the thermal tolerance among Fe/Co/MgO, Fe/Co/Mg/MgO and Fe/Co/MgO/Mg contacts. Although a highly efficient spin injection has been reported by insertion of a thin Mg layer below or above the MgO layer, these thermal tolerances decrease obviously. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-90114-9 |