On some new vector valued sequence spaces $ E(X, \lambda, p)

To define a new sequence space and determine the Köthe-Toeplitz duals of this sequence space, characterizing the matrix transformation classes between the defined sequence spaces and classical sequence spaces has been an important area of work for researchers. Defining and examining a new vector-val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2023, Vol.8 (6), p.13306-13316
1. Verfasser: Duyar, Osman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To define a new sequence space and determine the Köthe-Toeplitz duals of this sequence space, characterizing the matrix transformation classes between the defined sequence spaces and classical sequence spaces has been an important area of work for researchers. Defining and examining a new vector-valued sequence space is also a considerable field of study since it generalizes classical sequence spaces. In this study, new vector-valued sequence spaces $ E(X, \lambda, p) $ are introduced. The Köthe-Toeplitz duals of $ E(X, \lambda, p) $ spaces are identified. Also, necessary and sufficient conditions are determined for $ A = (A_{nk}) $ to belong to the matrix classes $ (E(X, \lambda, p), c(q)) $; where $ A_{ nk}\in B(X, Y) $, $ X\in \{c, \ell_\infty\} $ and $ Y $ is any Banach spaces.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2023673