Multi-Feature Manifold Discriminant Analysis for Hyperspectral Image Classification

Hyperspectral image (HSI) provides both spatial structure and spectral information for classification, but many traditional methods simply concatenate spatial features and spectral features together that usually lead to the curse-of-dimensionality and unbalanced representation of different features....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2019-03, Vol.11 (6), p.651
Hauptverfasser: Huang, Hong, Li, Zhengying, Pan, Yinsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral image (HSI) provides both spatial structure and spectral information for classification, but many traditional methods simply concatenate spatial features and spectral features together that usually lead to the curse-of-dimensionality and unbalanced representation of different features. To address this issue, a new dimensionality reduction (DR) method, termed multi-feature manifold discriminant analysis (MFMDA), was proposed in this paper. At first, MFMDA explores local binary patterns (LBP) operator to extract textural features for encoding the spatial information in HSI. Then, under graph embedding framework, the intrinsic and penalty graphs of LBP and spectral features are constructed to explore the discriminant manifold structure in both spatial and spectral domains, respectively. After that, a new spatial-spectral DR model for multi-feature fusion is built to extract discriminant spatial-spectral combined features, and it not only preserves the similarity relationship between spectral features and LBP features but also possesses strong discriminating ability in the low-dimensional embedding space. Experiments on Indian Pines, Heihe and Pavia University (PaviaU) hyperspectral data sets demonstrate that the proposed MFMDA method performs significantly better than some state-of-the-art methods using only single feature or simply stacking spectral features and spatial features together, and the classification accuracies of it can reach 95.43%, 97.19% and 96.60%, respectively.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs11060651