Singularity for a nonlinear degenerate hyperbolic-parabolic coupled system arising from nematic liquid crystals

This article focuses on the singularity formation of smooth solutions for a one-dimensional nonlinear degenerate hyperbolic-parabolic coupled system originating from the Poiseuille flow of nematic liquid crystals. Without assuming that the wave speed of the hyperbolic equation is a positive function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis 2023-01, Vol.12 (1), p.022503-1343
1. Verfasser: Hu, Yanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article focuses on the singularity formation of smooth solutions for a one-dimensional nonlinear degenerate hyperbolic-parabolic coupled system originating from the Poiseuille flow of nematic liquid crystals. Without assuming that the wave speed of the hyperbolic equation is a positive function, we show that its smooth solution will break down in finite time even for an arbitrarily small initial energy. Based on an estimate of the solution for the heat equation, we use the method of characteristics to control the wave speed and its derivative so that the wave speed does not degenerate and its derivative does not change sign in a period of time.
ISSN:2191-950X
2191-950X
DOI:10.1515/anona-2022-0268