Converging Effects of Three Different Endocrine Disrupters on Sox and Pou Gene Expression in Developing Rat Hippocampus: Possible Role of microRNA in Sex Differences

Endocrine disrupting chemicals (EDCs) can impair hippocampus-dependent behaviors in rat offspring and in children. In search for key processes underlying this effect, we compared the transcriptomes of rat hippocampus on postnatal day 6 after gestational and lactational exposure to three different ED...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in genetics 2021-11, Vol.12, p.718796-718796
Hauptverfasser: Lichtensteiger, Walter, Bassetti-Gaille, Catherine, Rehrauer, Hubert, Georgijevic, Jelena Kühn, Tresguerres, Jesus A.F., Schlumpf, Margret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endocrine disrupting chemicals (EDCs) can impair hippocampus-dependent behaviors in rat offspring and in children. In search for key processes underlying this effect, we compared the transcriptomes of rat hippocampus on postnatal day 6 after gestational and lactational exposure to three different EDCs at doses known to impair development of learning and memory. Aroclor 1254, a commercial PCB mixture (5 mg/kg or 0.5 mg/kg), or bisphenol A (5 mg/kg or 0.5 mg/kg) were administered in chow, chlorpyrifos (3 mg/kg or 1 mg/kg) was injected subcutaneously. Male hippocampus exhibited a common effect of all three chemicals on genes involved in cell-autonomous processes, Sox6, Sox11, Pou2f2/Oct2, and Pou3f2/Brn2, all upregulated at the high dose. Additional genes of the Sox and Pou families were affected by only one or two of the chemicals. Real time RT PCR showed a comparable expression change for bisphenol A also at the lower dose. Female hippocampus exhibited much fewer genes with expression changes (almost none with false discovery rate
ISSN:1664-8021
1664-8021
DOI:10.3389/fgene.2021.718796