THE RELATION BETWEEN MAXWELL, DIRAC, AND THE SEIBERG-WITTEN EQUATIONS

We discuss unsuspected relations between Maxwell, Dirac, and the Seiberg‐Witten equations. First, we present the Maxwell‐Dirac equivalence (MDE) of the first kind. Crucial to that proposed equivalence is the possibility of solving for ψ (a representative on a given spinorial frame of a Dirac‐Hestene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2003, Vol.2003 (43), p.2707-2734-209
1. Verfasser: Rodrigues, Waldyr A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss unsuspected relations between Maxwell, Dirac, and the Seiberg‐Witten equations. First, we present the Maxwell‐Dirac equivalence (MDE) of the first kind. Crucial to that proposed equivalence is the possibility of solving for ψ (a representative on a given spinorial frame of a Dirac‐Hestenes spinor field) the equation , where F is a given electromagnetic field. Such task is presented and it permits to clarify some objections to the MDE which claim that no MDE may exist because F has six (real) degrees of freedom and ψ has eight (real) degrees of freedom. Also, we review the generalized Maxwell equation describing charges and monopoles. The enterprise is worth, even if there is no evidence until now for magnetic monopoles, because there are at least two faithful field equations that have the form of the generalized Maxwell equations. One is the generalized Hertz potential field equation (which we discuss in detail) associated with Maxwell theory and the other is a (nonlinear) equation (of the generalized Maxwell type) satisfied by the 2‐form field part of a Dirac‐Hestenes spinor field that solves the Dirac‐Hestenes equation for a free electron. This is a new result which can also be called MDE of the second kind. Finally, we use the MDE of the first kind together with a reasonable hypothesis to give a derivation of the famous Seiberg‐Witten equations on Minkowski spacetime. A physical interpretation for those equations is proposed.
ISSN:0161-1712
1687-0425
DOI:10.1155/S0161171203210218