Cross section and geometry optimization of steel truss arch bridges based on internal forces

The purpose of this study is to obtain the optimum geometric design and cross section member element of steel arch bridges. It is necessary because the geometric design of the steel truss arch bridges have the direct impact to the steel section used in the structures. Therefore, steel section have t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2019, Vol.258, p.2002
Hauptverfasser: Mushthofa, Malik, Aminullah, Akhmad, Muslikh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study is to obtain the optimum geometric design and cross section member element of steel arch bridges. It is necessary because the geometric design of the steel truss arch bridges have the direct impact to the steel section used in the structures. Therefore, steel section have the impact to the economic value of the bridge design due to the structure weight. There are many important variables have to considered in the bridge design. Rise to span ratio variable is the major variable in the arch bridge geometric design. Arch bridge structures rely on the axial force capacity of the main arch, whereas shear forces and bending moments as secondary consideration. The optimization process is done by collecting the axial force, shear force and bending moment data of each steel arch bridge numeric model, and scaling its value from 0 to 1 to compare the data of every span in the same field, in order to achieve the optimum rise to span ratio. Rise to span ratio data of steel arch bridges in China and Japan used as the comparison with the result of this study, due to their brief history and rich experiences on arch bridge engineering innovation, and also have the large of amount of steel arch bridges. The results of this study give the optimum value of rise to span ratio between 1/4 to 1/7. It has good correlation with the rise to span ratio data of steel arch bridges in China and Japan i.e. 1/4 - 1/6 and 1/5 - 1/7 respectively.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201925802002