Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids
As the world races to decarbonize power systems to mitigate climate change, the body of research analyzing paths to zero emissions electricity grids has substantially grown. Although studies typically include commercially available technologies, few of them consider offshore wind and wave energy as...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-08, Vol.15 (1), p.6826-16, Article 6826 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the world races to decarbonize power systems to mitigate climate change, the body of research analyzing paths to zero emissions electricity grids has substantially grown. Although studies typically include commercially available technologies, few of them consider offshore wind and wave energy as contenders in future zero-emissions grids. Here, we model with high geographic resolution both offshore wind and wave energy as independent technologies with the possibility of collocation in a power system capacity expansion model of the Western Interconnection with zero emissions by 2050. In this work, we identify cost targets for offshore wind and wave energy to become cost effective, calculate a 17% reduction in total installed capacity by 2050 when offshore wind and wave energy are fully deployed, and show how curtailment, generation, and transmission change as offshore wind and wave energy deployment increase.
Offshore wind and wave energy may play a key role in the energy transition. Here, authors identify cost targets for these technologies to become cost effective and show how the grid’s installed capacity decreases, and generation and transmission change as offshore energy deployment increase. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-50040-6 |