Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells
The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. When estimated using sensitive photocurrent measurements that cover the above- and sub-bandgap regions, the radiative open-circuit voltage is often unphysicall...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-02, Vol.15 (1), p.1276-1276, Article 1276 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. When estimated using sensitive photocurrent measurements that cover the above- and sub-bandgap regions, the radiative open-circuit voltage is often unphysically low. Here we report sensitive photocurrent and electroluminescence spectroscopy to probe radiative recombination at sub-bandgap defects in wide-bandgap mixed-halide lead perovskite solar cells. The radiative ideality factor associated with the optical transitions increases from 1, above and near the bandgap edge, to ~2 at mid-bandgap. Such photon energy-dependent ideality factor corresponds to a many-diode model. The radiative open-circuit voltage limit derived from this many-diode model enables differentiating between radiative and non-radiative voltage losses. The latter are deconvoluted into contributions from the bulk and interfaces via determining the quasi-Fermi level splitting. The experiments show that while sub-bandgap defects do not contribute to radiative voltage loss, they do affect non-radiative voltage losses.
The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. Here, authors report photocurrent and electroluminescence spectroscopy to probe radiative recombination at sub-bandgap defects in wide-bandgap solar cells. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-45512-8 |